Produksi Dan Laju Dekomposisi Serasah Hutan Kampus Institut Pertanian Bogor, Kabupaten Bogor, Indonesia
DOI:
https://doi.org/10.62588/y0d2pq27Keywords:
Decomposition, Forest, IPB University, LitterAbstract
Forests are important habitats that support an ecosystem consisting of various types of plants that have production potential and litter decomposition rates. This research aims to find out how to calculate the production and decomposition rate of litter in homogeneous forest and heterogeneous forest terrestrial ecosystems. The research was carried out in homogeneous and heterogeneous forest areas in the IPB University campus area, Bogor Regency, West Java Province. The sampling process seemed to be carried out using 1x1 m nylon mesh litter trap method for 5 weeks. The results of the research show that the composition of the species that grow in heterogeneous forest areas is Kisabun (Filicium decipien), Sawo kecik (Manilkara kauki), Bisbul (Diospyros blancoy), Water guava (Eugenia aduea), Matoa (Pometia pinnata), Pinus (Cupressus lusitanica), and Meranti (Shorea sp), while in the homogeneous forest ecosystem is the rubber tree (Hevea brasiliensis). The amount of waste collected in heterogeneous forest ecosystems is greater than in homogeneous forest ecosystems (Rubber forests), namely 98 grams and 5.2 grams respectively with results in heterogeneous forest ecosystems of 7.2 grams dry weight from 10 grams wet weight, whereas in homogeneous forest ecosystem (rubber forest 0.8 grams dry weight from 2 grams wet weight). The decomposition rate of litter in heterogeneous ecosystems is 0.21 grams/year, while in rubber forest ecosystems it is 0.17 grams/year.
Downloads
References
Alewell, C., Ringeval, B., Ballabio, C., Robinson, D. A., Panagos, P., & Borrelli, P. (2020). Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 11(1), Article 1. https://doi.org/10.1038/s41467-020-18326-7
Ali, H., Ma, L., Ghadbeigi, H., & Mumtaz, K. (2017). In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Materials Science and Engineering: A, 695, 211–220. https://doi.org/10.1016/j.msea.2017.04.033
Antala, M., Rastogi, A., Cogliati, S., Stróżecki, M., Colombo, R., & Juszczak, R. (2024). Sun-induced fluorescence spectrum as a tool for assessing peatland vegetation productivity in the framework of warming and reduced precipitation experiment. Remote Sensing of Environment, 301, 113921. https://doi.org/10.1016/j.rse.2023.113921
Aoyagi, R., Kitayama, K., & Turner, B. L. (2022). How do tropical tree species maintain high growth rates on low-phosphorus soils? Plant and Soil, 480(1), 31–56. https://doi.org/10.1007/s11104-022-05602-2
Baldwin, R. A., Becchetti, T. A., Davy, J. S., Larsen, R. E., Mashiri, F. E., Meinerz, R., Ozeran, R. K., & Rao, D. (2022). Estimating Reduction in Standing Crop Biomass from California Ground Squirrels in Central California Rangelands. Rangeland Ecology & Management, 83, 50–58. https://doi.org/10.1016/j.rama.2022.03.002
Bélanger, N., & Chaput-Richard, C. (2023). Experimental Warming of Typically Acidic and Nutrient-Poor Boreal Soils Does Not Affect Leaf-Litter Decomposition of Temperate Deciduous Tree Species. Soil Systems, 7(1), Article 1. https://doi.org/10.3390/soilsystems7010014
Berg, B., & McClaugherty, C. (2020). Decomposer Organisms. In B. Berg & C. McClaugherty (Eds.), Plant Litter: Decomposition, Humus Formation, Carbon Sequestration (pp. 45–65). Springer International Publishing. https://doi.org/10.1007/978-3-030-59631-6_3
Bhattacharjee, U., & Uppaluri, R. V. S. (2023). Growth and nutritional characteristics of Phaseolus vulgaris and Jeevamrutha bio-fertilizer-vermicompost system. Bioresource Technology Reports, 22, 101416. https://doi.org/10.1016/j.biteb.2023.101416
Campanale, C., Galafassi, S., Di Pippo, F., Pojar, I., Massarelli, C., & Uricchio, V. F. (2024). A critical review of biodegradable plastic mulch films in agriculture: Definitions, scientific background and potential impacts. TrAC Trends in Analytical Chemistry, 170, 117391. https://doi.org/10.1016/j.trac.2023.117391
Chakravarty, S., Rai, P., Vineeta, Pala, N. A., & Shukla, G. (2020). Litter Production and Decomposition in Tropical Forest. In Handbook of Research on the Conservation and Restoration of Tropical Dry Forests (pp. 193–212). IGI Global. https://doi.org/10.4018/978-1-7998-0014-9.ch010
Dai, S., Wei, T., Tang, J., Xu, Z., & Gong, H. (2023). Temporal Changes in Litterfall and Nutrient Cycling from 2005–2015 in an Evergreen Broad-Leaved Forest in the Ailao Mountains, China. Plants, 12(6), Article 6. https://doi.org/10.3390/plants12061277
Daksina, B. F., Makalew, A. M., & Langai, B. F. (2021). Evaluasi Kesuburan Tanah Ultisol pada Pertanaman Karet di Kecamatan Cempaka Kota Banjarbaru, Provinsi Kalimantan Selatan. Agroekotek View, 4(1), Article 1. https://doi.org/10.20527/agtview.v4i1.2990
Ding, H., Wang, Z., Zhang, Y., Li, J., Jia, L., Chen, Q., Ding, Y., & Wang, S. (2023). A Mechanistic Model for Estimating Rice Photosynthetic Capacity and Stomatal Conductance from Sun-Induced Chlorophyll Fluorescence. Plant Phenomics, 5, 0047. https://doi.org/10.34133/plantphenomics.0047
Dong, X., Gao, P., Zhou, R., Li, C., Dun, X., & Niu, X. (2021). Changing characteristics and influencing factors of the soil microbial community during litter decomposition in a mixed Quercus acutissima Carruth. And Robinia pseudoacacia L. forest in Northern China. CATENA, 196, 104811. https://doi.org/10.1016/j.catena.2020.104811
Elias, D. M. O., Robinson, S., Both, S., Goodall, T., Majalap-Lee, N., Ostle, N. J., & McNamara, N. P. (2020). Soil Microbial Community and Litter Quality Controls on Decomposition Across a Tropical Forest Disturbance Gradient. Frontiers in Forests and Global Change, 3. https://www.frontiersin.org/articles/10.3389/ffgc.2020.00081
Findlay, S. E. G. (2021). Chapter 4—Organic Matter Decomposition. In K. C. Weathers, D. L. Strayer, & G. E. Likens (Eds.), Fundamentals of Ecosystem Science (Second Edition) (pp. 81–102). Academic Press. https://doi.org/10.1016/B978-0-12-812762-9.00004-6
Firman, F. A. R., Lestari, D. P., Hadi, A. P., Rizki, A. S., Almahyra, A. Z., Alvarendra, A. Z., Cerminand, N. I., Listari, N., Kuswara, R. D., Gazali, Z., Ekaningtias, M., Jannah, S. W., & Pratiwi, B. Y. H. (2023). Potential Of Carbon Sink In Mangrove Substrates In Lembar Bay, West Lombok, Indonesia. BIOTROPIA - The Southeast Asian Journal of Tropical Biology, 30(3), Article 3. https://doi.org/10.11598/btb.2023.30.3.1956
Fithi, H., Jayanti, E. T., & Rahman, F. A. (2023). Development of Herbarium Media In The Course Plant Taxonomy Course Low UIN Mataram. ASIAN: Indonesian Journal of Learning Development and Innovation, 1(2), Article 2.
García-Palacios, P., McKie, B. G., Handa, I. T., Frainer, A., & Hättenschwiler, S. (2016). The importance of litter traits and decomposers for litter decomposition: A comparison of aquatic and terrestrial ecosystems within and across biomes. Functional Ecology, 30(5), 819–829. https://doi.org/10.1111/1365-2435.12589
Giweta, M. (2020). Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. Journal of Ecology and Environment, 44(1), 11. https://doi.org/10.1186/s41610-020-0151-2
Gunina, A., & Kuzyakov, Y. (2022). From energy to (soil organic) matter. Global Change Biology, 28(7), 2169–2182. https://doi.org/10.1111/gcb.16071
Harindintwali, J. D., Zhou, J., Muhoza, B., Wang, F., Herzberger, A., & Yu, X. (2021). Integrated eco-strategies towards sustainable carbon and nitrogen cycling in agriculture. Journal of Environmental Management, 293, 112856. https://doi.org/10.1016/j.jenvman.2021.112856
Hartmann, M., & Six, J. (2023). Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 4(1), Article 1. https://doi.org/10.1038/s43017-022-00366-w
Hilyana, S., & Rahman, F. A. (2022). Variabilities of the carbon storage of mangroves in Gili Meno Lake, North Lombok District, Indonesia. Biodiversitas Journal of Biological Diversity, 23(11). https://doi.org/10.13057/biodiv/d231140
Huang, W., Zhou, C., Liu, Z., Sun, H., Du, J., & Zhang, L. (2021). Improving Soil-Water Characteristics and Pore Structure of Silty Soil Using Nano-aqueous Polymer Stabilisers. KSCE Journal of Civil Engineering, 25(9), 3298–3305. https://doi.org/10.1007/s12205-021-2036-z
Jannah, S. W., Rahman, F. A., & Hadi, A. P. (2021). Analisis Kandungan Karbon Pada Vegetasi Mangrove Di Desa Lembar Kabupaten Lombok Barat. Bioscientist : Jurnal Ilmiah Biologi, 9(2), 11.
Karyaningsih, I. (2018). Types Of Organisms Decomposers Of Soil Pollutants. Journal of Forestry And Environment, 1(01). https://doi.org/10.25134/jfe.v1i01.1044
Kleber, M., Bourg, I. C., Coward, E. K., Hansel, C. M., Myneni, S. C. B., & Nunan, N. (2021). Dynamic interactions at the mineral–organic matter interface. Nature Reviews Earth & Environment, 2(6), Article 6. https://doi.org/10.1038/s43017-021-00162-y
Králík, T., Knápek, J., Vávrová, K., Outrata, D., Romportl, D., Horák, M., & Jandera, J. (2023). Ecosystem services and economic competitiveness of perennial energy crops in the modelling of biomass potential – A case study of the Czech Republic. Renewable and Sustainable Energy Reviews, 173, 113120. https://doi.org/10.1016/j.rser.2022.113120
Krishna, M. P., & Mohan, M. (2017). Litter decomposition in forest ecosystems: A review. Energy, Ecology and Environment, 2(4), 236–249. https://doi.org/10.1007/s40974-017-0064-9
Kumar, M., & Garkoti, S. C. (2021). Functional traits, growth patterns, and litter dynamics of invasive alien and co-occurring native shrub species of chir pine forest in the central Himalaya, India. Plant Ecology, 222(6), 723–735. https://doi.org/10.1007/s11258-021-01140-6
Kuo, C., Wei, C., Chen, J., Chen, C., & Hsieh, Y. (2023). Effects of thinning intensities on litterfall characteristics and decomposition in the natural secondary lowland forests of Southeastern Taiwan. Scandinavian Journal of Forest Research, 38(3), 166–173. https://doi.org/10.1080/02827581.2023.2216947
Kusmana, C., & Yentiana, R. A. (2021). Laju Dekomposisi Serasah Daun Shorea guiso di Hutan Penelitian Dramaga, Bogor, Jawa Barat. Journal of Tropical Silviculture, 12(3), Article 3. https://doi.org/10.29244/j-siltrop.12.3.172-177
Lladó, S., López-Mondéjar, R., & Baldrian, P. (2017). Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiology and Molecular Biology Reviews, 81(2), 10.1128/mmbr.00063-16. https://doi.org/10.1128/mmbr.00063-16
Luo, Y., Wang, L., Cao, T., He, W., Lu, S., Li, F., Zhang, Z., Chang, T., & Tian, X. (2023). Legacy effect of plant chemical defence substances on litter decomposition. Plant and Soil, 487(1), 93–108. https://doi.org/10.1007/s11104-023-05954-3
Makoto, K., & Koike, T. (2021). Charcoal ecology: Its function as a hub for plant succession and soil nutrient cycling in boreal forests. Ecological Research, 36(1), 4–12. https://doi.org/10.1111/1440-1703.12179
Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science, 2019, e5794869. https://doi.org/10.1155/2019/5794869
Nonghuloo, I. M., Kharbhih, S., Suchiang, B. R., Adhikari, D., Upadhaya, K., & Barik, S. K. (2020). Production, decomposition and nutrient contents of litter in subtropical broadleaved forest surpass those in coniferous forest, Meghalaya. Tropical Ecology, 61(1), 5–12. https://doi.org/10.1007/s42965-020-00065-x
Prescott, C. E., & Vesterdal, L. (2021). Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. Forest Ecology and Management, 498, 119522. https://doi.org/10.1016/j.foreco.2021.119522
Putra, P. S., Supriadi, Achmad, A., Yamada, T., & Ngakan, P. O. (2023). Seasonal diversity and distribution of decomposing macrofungi in three forest communities: Why do they differ? IOP Conference Series: Earth and Environmental Science, 1230(1), 012059. https://doi.org/10.1088/1755-1315/1230/1/012059
Qu, H., Pan, C., Zhao, X., Lian, J., Wang, S., Wang, X., Ma, X., & Liu, L. (2019). Initial lignin content as an indicator for predicting leaf litter decomposition and the mixed effects of two perennial gramineous plants in a desert steppe: A 5-year long-term study. Land Degradation & Development, 30(14), 1645–1654. https://doi.org/10.1002/ldr.3343
Rahman, F. A., Ihsan, M. S., & Husain, P. (2023). Analisis Korelasi Kimia-Fisika Perairan Terhadap Kelimpahan Mangrove Teluk Sereweh, Kabupaten Lombok Timur, Nusa Tenggara Barat. JURNAL SAINS DAN PEMBELAJARAN MATEMATIKA, 1(2), Article 2. https://doi.org/10.51806/jspm.v1i2.65
Rahman, F. A., Listari, N., & Jannah, S. W. (2022). Bioakumulasi Logam Berat (Pb) pada Vegetasi Mangrove Famili Rhizophoraceae di Teluk Lembar Kabupaten Lombok Barat. Bioscientist : Jurnal Ilmiah Biologi, 10(2), 1273. https://doi.org/10.33394/bioscientist.v10i2.5956
Rahman, F. A., Qayim, I., & Wardiatno, Y. (2023). Carbon Stored on Seagrass Beds in Gili Maringkik, Lombok, Indonesia. BIOTROPIA - The Southeast Asian Journal of Tropical Biology, 30(1), Article 1. https://doi.org/10.11598/btb.2023.30.1.1776
Rahman, F. A., Rohyani, I. S., Hadi, A. P., & Lestari, D. P. (2019). KOMPOSISI VEGETASI MANGROVE BERDASARKAN STRATA PERTUMBUHAN DI TELUK SEREWEH, KABUPATEN LOMBOK TIMUR, NUSA TENGGARA BARAT. 4(2), 9.
Rawat, M., Arunachalam, K., Arunachalam, A., Alatalo, J. M., & Pandey, R. (2020). Predicting litter decomposition rate for temperate forest tree species by the relative contribution of green leaf and litter traits in the Indian Himalayas region. Ecological Indicators, 119, 106827. https://doi.org/10.1016/j.ecolind.2020.106827
Rinaudo, T. (2023). Farmer-Managed Natural Regeneration of Soil Systems in the Sahelian Region of West Africa. In Biological Approaches to Regenerative Soil Systems (2nd ed.). CRC Press.
Sayer, E. J., Rodtassana, C., Sheldrake, M., Bréchet, L. M., Ashford, O. S., Lopez-Sangil, L., Kerdraon-Byrne, D., Castro, B., Turner, B. L., Wright, S. J., & Tanner, E. V. J. (2020). Chapter Five—Revisiting nutrient cycling by litterfall—Insights from 15 years of litter manipulation in old-growth lowland tropical forest. In A. J. Dumbrell, E. C. Turner, & T. M. Fayle (Eds.), Advances in Ecological Research (Vol. 62, pp. 173–223). Academic Press. https://doi.org/10.1016/bs.aecr.2020.01.002
Vicca, S., Goll, D. S., Hagens, M., Hartmann, J., Janssens, I. A., Neubeck, A., Peñuelas, J., Poblador, S., Rijnders, J., Sardans, J., Struyf, E., Swoboda, P., van Groenigen, J. W., Vienne, A., & Verbruggen, E. (2022). Is the climate change mitigation effect of enhanced silicate weathering governed by biological processes? Global Change Biology, 28(3), 711–726. https://doi.org/10.1111/gcb.15993
Vourlitis, G. L., Jaureguy, J., Marin, L., & Rodriguez, C. (2021). Shoot and root biomass production in semi-arid shrublands exposed to long-term experimental N input. Science of The Total Environment, 754, 142204. https://doi.org/10.1016/j.scitotenv.2020.142204
Walker, G. M., & White, N. A. (2017). Introduction to Fungal Physiology. In Fungi (pp. 1–35). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119374312.ch1
Wang, L., Chen, Y., Zhou, Y., Xu, Z., Tan, B., You, C., Zhang, L., Li, H., Zheng, H., Guo, L., Wang, L., Huang, Y., Zhang, J., & Liu, Y. (2021). Environmental conditions and litter nutrients are key determinants of soluble C, N, and P release during litter mixture decomposition. Soil and Tillage Research, 209, 104928. https://doi.org/10.1016/j.still.2020.104928
Widiawati, W., Umami, S. S., Ihsan, M. S., Husain, P., & Rahman, F. A. (2023). Studi Kualitas Kesehatan Lingkungan Perairan Ekosistem Mangrove Pesisir Sekotong Lombok Barat. JURNAL SAINS DAN PEMBELAJARAN MATEMATIKA, 1(2), Article 2. https://doi.org/10.51806/jspm.v1i2.64
Wigley, B. J., Charles-Dominique, T., Hempson, G. P., Stevens, N., TeBeest, M., Archibald, S., Bond, W. J., Bunney, K., Coetsee, C., Donaldson, J., Fidelis, A., Gao, X., Gignoux, J., Lehmann, C., Massad, T. J., Midgley, J. J., Millan, M., Schwilk, D., Siebert, F., … Kruger, L. M. (2020). A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems. Australian Journal of Botany, 68(8), 473–531. https://doi.org/10.1071/BT20048
Zheng, H., Chen, Y., Liu, Y., Heděnec, P., Peng, Y., Xu, Z., Tan, B., Zhang, L., Guo, L., Wang, L., & Vesterdal, L. (2021). Effects of Litter Quality Diminish and Effects of Vegetation Type Develop During Litter Decomposition of Two Shrub Species in an Alpine Treeline Ecotone. Ecosystems, 24(1), 197–210. https://doi.org/10.1007/s10021-020-00512-9
Zhu, Q., Chen, H., Peng, C., Liu, J., Piao, S., He, J.-S., Wang, S., Zhao, X., Zhang, J., Fang, X., Jin, J., Yang, Q.-E., Ren, L., & Wang, Y. (2023). An early warning signal for grassland degradation on the Qinghai-Tibetan Plateau. Nature Communications, 14(1), Article 1. https://doi.org/10.1038/s41467-023-42099-4
Zifcakova, L. (2020). Factors Affecting Soil Microbial Processes. In R. Datta, R. S. Meena, S. I. Pathan, & M. T. Ceccherini (Eds.), Carbon and Nitrogen Cycling in Soil (pp. 439–461). Springer. https://doi.org/10.1007/978-981-13-7264-3_13
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Firman Ali Rahman, Taufik Arianto, Sulistijorini, Aisha Zea Almahyra, Arsya Zafran Alvarendra, Mai Rizali (Author)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.